-
Deep Learning - 2machine learning 2020. 12. 10. 11:32
google colab에서 튜토리얼을 진행했다. MNIST에서 제공하는 손글씨 dataset을 가지고 0~9까지의 숫자를 분류해 내는 학습이다. "케라스 창시자에게 배우는 딥러닝" 5장 1절 예제이다.
import keras keras.__version__
학습에 필요한 keras를 import해준다.
from keras import layers from keras import models model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu'))
Conv2D층과 MaxPooling2D층을 3개 쌓아 간단한 컨브넷을 만든다.
사진의 크기가 28*28에 흑백사진이기 때문에 input_shape = (28, 28, 1) 을 입력해준다.model.summary() ------ Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 26, 26, 32) 320 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 11, 11, 64) 18496 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 3, 3, 64) 36928 ================================================================= Total params: 55,744 Trainable params: 55,744 Non-trainable params: 0
컨브넷 구조를 출력해보면 위와 같다.
그 다음 컨브넷의 출력인 (3, 3, 64) 3D출력을 1D텐서로 펼치기 위해 완전연결 네트워크와 연결시켜 준다.model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10, activation='softmax'))
이후 다시 구조를 출력해보면 아래와 같다.
model.summary() ---------- Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 26, 26, 32) 320 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 11, 11, 64) 18496 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 3, 3, 64) 36928 _________________________________________________________________ flatten (Flatten) (None, 576) 0 _________________________________________________________________ dense (Dense) (None, 64) 36928 _________________________________________________________________ dense_1 (Dense) (None, 10) 650 ================================================================= Total params: 93,322 Trainable params: 93,322 Non-trainable params: 0
(3, 3, 64) 3D 출력이 (576,)크기로 펼쳐진 후 Dense층으로 주입되는것을 볼 수 있다.
이제 훈련을 시켜보고 테스트 해보자.from keras.datasets import mnist from keras.utils import to_categorical (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images = train_images.reshape((60000, 28, 28, 1)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28, 28, 1)) test_images = test_images.astype('float32') / 255 train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5, batch_size=64) ------------ Epoch 1/5 938/938 [==============================] - 3s 4ms/step - loss: 0.1693 - accuracy: 0.9464 Epoch 2/5 938/938 [==============================] - 3s 3ms/step - loss: 0.0456 - accuracy: 0.9863 Epoch 3/5 938/938 [==============================] - 3s 3ms/step - loss: 0.0316 - accuracy: 0.9904 Epoch 4/5 938/938 [==============================] - 3s 3ms/step - loss: 0.0233 - accuracy: 0.9930 Epoch 5/5 938/938 [==============================] - 3s 3ms/step - loss: 0.0188 - accuracy: 0.9943
99.43%의 정확도를 훈련set에서 보이고 있다.
test_loss, test_acc = model.evaluate(test_images, test_labels) test_acc ---------- 0.9911999702453613
테스트set에서도 99.12%정도의 높은 정확도를 보여주고 있다.
1분도 걸리지 않는 학습과정을 통해 0부터 9까지의 손글씨를 99%확률로 판단할 수 있게 된것이다.'machine learning' 카테고리의 다른 글
Deep Learning - 6 (0) 2020.12.11 Deep Learning - 5 (0) 2020.12.10 Deep Learning - 4 (0) 2020.12.10 Deep Learning - 3 (0) 2020.12.10 Deep Learning - 1 (0) 2020.12.10